2021
154 Electrochemical CO2 reduction; L. L. Wang, L. D. Hao, Z. Y. Sun,* ACS Sustainable Chem. Eng. 2021. To be submitted.
153 Electrochemical CO2 reduction; S. L. Chu, S. Hong, Y. Q. Jiang, Y. M. Wang, L. D. Hao, and Z. Y. Sun,* ACS Catal. 2021. To be submitted.
152 Heterogenous catalysis; U. Siddiqui, and Z. Y. Sun,* Chem Catalysis (2021). To be submitted. (Invited)
151 Improving the catalytic performance of MOFs for CO2 conversion: Strategies and perspectives; L. D. Hao, Q. N. Xia,* Q. Zhang,* J. Masa, and Z. Y. Sun,* Chinese J. Catal. (2021). Submitted (Invited)
150 Photocatalytic N2 reduction; H. D. Shen, L. D. Hao, J. Strunk,* and Z. Y. Sun,* Energy Environ. Mater. (2021). To be submitted.
149 Ethylene/2-butene cross-metathesis over a WO3/[SiO2+Y] catalyst mixture for propylene production: the dramatic multifunctional roles of zeolite Y; P. Zhao, Z. Y. Sun, L. Ye, S. Wu, S. C. E. Tsang,* et al. J. Catal. (2021). Under revision.
148 MOFs for electrochemical CO2 reduction; Q. Tan, L. D. Hao, D. H. Liu,* Z. Y. Sun,* et al. Cell Rep. Phys. Sci. (2021). To be submitted.
147 Z. Q. Zhao, X. C. Hui, R. P. Huo, C. Yan, A. W. Robertson and Z. Y. Sun,* Adv. Funct. Mater. (2021). To be submitted.
146Enhanced electrochemical CO2 reduction to ethylene over CuO by tuning oxygen vacancies and metal doping; Y. Q. Jiang, C. Choi, S. Hong, S. Chu, T.-S. Wu, Y.-L. Soo, D. Hao, Y. Jung* and Z. Y. Sun,* Cell Rep. Phys. Sci. (2021). Accepted.
145 Electrochemical CO2 reduction; Z. Y. Sun,* et al. Adv. Sci. (2021). To be submitted.
144 二氧化碳还原转化; 刘志敏, 孙振宇, Acta Phys. -Chim. Sin. (物理化学学报) 37, 2012024 (2021).
143 Electrocatalytic CO2 reduction to ethylene over Cu nanoparticles supported on CeO2: Effect of CeO2 exposed facets (CeO2担载Cu纳米粒子电催化CO2还原产乙烯:CeO2不同暴露晶面对催化性能的影响); S. L. Chu, X. Li, A. W. Robeartson and Z. Y. Sun,* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2009023 (2021).
142 Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design; H. D. Shen, C. Choi, J. Masa, X. Li, Y. Jung,* J. S. Qiu and Z. Y. Sun,* Chem (2021). DOI: 10.1016/j.chempr.2021.01.009.
141 Metal oxide-based materials for electrochemical CO2 reduction (基于金属氧化物材料的二氧化碳电催化还原); L. D. Hao and Z. Y. Sun,* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2009033 (2021).
140 Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries; Z. J. Lu, S. D. Yao, Y. Z. Dong, T. Wang, H. R. Pan, X. N. Huang, D. L. Wu,* Z. Y. Sun* and X. X. Chen,* J. Energy Chem. 56, 87-97 (2021). DOI: 10.1016/j.jechem.2020.07.040.
139 CO2 electroreduction applications of atomically dispersed metallic materials;L. D. Hao, and Z. Y. Sun,* et al. Book chapter for a CRC Press book (2020). In preparation. (Invited)
2020
138 Recent advances in electrode materials for electrochemical CO2 reduction; X. Li, J. Masa, Z. Y. Sun,* Book chapter for an ACS Symposium Series entitled "Clean Energy Materials" 1364, Editor(s): Lang Qin, Liang-Shih Fan, ISBN13: 9780841298620, eISBN: 9780841298613, DOI: 10.1021/bk-2020-1 (2020).
137 An efficient pH-universal electrocatalyst for oxygen reduction: Defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel; X. K. Wang, Z. Zhang, H. Y. Gai, Z. Y. Sun* and M. H. Huang,* Mater. Today Energy 17 100452 (2020).
136 Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction; L. H. Yang, C. Choi, S. Hong, Z. M. Liu, M. M. Yang, H. D. Shen, A. W. Robertson, H. Zhang, T. W. B. Lo, Y. Jung* and Z. Y. Sun,* Chem. Commun. 56, 10910-10913 (2020). DOI: 10.1039/D0CC01136C.
135 A miracle metal@zeolite for selective conversion of syngas to ethanol; H. D. Shen and Z. Y. Sun,* Chem 6, 544-548 (2020). DOI: https://doi.org/10.1016/j.chempr.2020.02.005.
134 Dramatically boost oxygen electrocatalysis of N-doped carbon for zinc-air battery; H. M. Liu, X. N. Huang, Z. J. Lu, T. Wang, Y. M. Zhu, J. X. Cheng, Y. Wang, D. L. Wu*, Z. Y. Sun,* A. W. Robertson and X. X. Chen,* Nanoscale 12, 9628-9639 (2020). DOI: 10.1039/C9NR10800A.
133 Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation; Z. Q. Zhao, C. Choi, S. Hong, H. D. Shen, C. Yan,* J. Masa, Y. Jung,* J. S. Qiu, and Z. Y. Sun,* Nano Energy 78, 105368 (2020). DOI: 10.1016/j.nanoen.2020.105368
132 Stabilization of Cu+ by tuning CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene; S. L. Chu, X. P. Yan, C. Choi, S. Hong, A. W. Robertson, J. Masa, B. X. Han, Y. Jung* and Z. Y. Sun,* Green Chem. 22, 6540-6546 (2020). DOI: 10.1039/D0GC02279A.
131 Metal-tuned W18O49 for efficient electrocatalytic N2 reduction; M. M. Yang, R. P. Huo, H. D. Shen, Q. N. Xia,* A. W. Robertson, J. S. Qiu and Z. Y. Sun,* ACS Sustainable Chem. Eng. 8, 2957-2963 (2020). DOI : 10.1021/acssuschemeng.9b07526.
130 Achieving highly selective electrochemical CO2 reduction by tuning CuO-Sb2O3 nanocomposites; Y. M. Li, S. L. Chu, H. D. Shen, Q. N. Xia,* A. W. Robertson,* J. Masa, U. Siddiqui and Z. Y. Sun,* ACS Sustainable Chem. Eng. 8, 4948-4954 (2020). DOI: 10.1021/acssuschemeng.0c00800.
129 Photocatalytic reduction of CO2 by metal-free based materials: Recent advances and future perspective; H. D. Shen, T. Peppel,* J. Stunk and Z. Y. Sun,* Solar RRL 4, 1900546 (2020). DOI: doi.org/10.1002/solr.201900546.
128 Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2; F. Li, G. H. Gu, C. Choi, P. Kolla*, S. Hong, T. -S. Wu, Y. -L. Soo, J. Masa, S. Mukerjee, Y. Jung,* J. S. Qiu and Z. Y. Sun,* Appl. Catal. B Environ. 277, 119241 (2020). DOI: 10.1016/j.apcatb.2020.119241.
127 Two-dimensional materials for energy conversion and storage; H. C. Tao, Q. Fan, T. Ma, H. Z. Liu, H. Gysling, J. Texter,* F. Guo and Z. Y. Sun,* Prog. Mater. Sci. 111, 100637 (2020). DOI: 10.1016/j.pmatsci.2020.100637.
126 Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2; Q. Fan, P. F. Hou, C. Choi, S. Hong, Y. L. Su, T. Wu, P. Kang,* Y. S. Jung* and Z. Y. Sun,* Adv. Energy Mater. 10, 1903068 (2020). DOI: 10.1002/aenm.201903068.
125 Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range; M. L. Zhang, C. Choi, R. P. Huo, G. H. Gu, S. Hong, C. Yan, S. Y. Xu, A. W. Robertson, J. S. Qiu,* Y. Jung* and Z. Y. Sun,* Nano Energy68, 104323 (2020). DOI: 10.1016/j.nanoen.2019.104323.
124 离子液体自模板合成多孔碳氮 材料及其对CO2的吸附性能; J. H. Liu, H. T. Liu, G. Y. Zhao* and Z. Y. Sun,* 过程工程学报 The Chinese Journal of Process Engineering 20, 108-115 (2020). DOI: 10.12034/j.issn.1009-606X.219164.
2019
123 Atomically dispersed Ni sites for selective electrocatalytic CO2 reduction; F. Li, S. Hong, X. Li, J. Masa and Z. Y. Sun,* ACS Appl. Energy Mater. 2, 8836-8842 (2019). DOI: 10.1021/acsaem.9b01828.
122 Application of two-dimensional materials for electrochemical carbon dioxide reduction; X. Li and Z. Y. Sun,* Book chapter in "2D Nanomaterials for Energy Applications, 1st Edition. Graphene and Beyond", edited by Spyridon Zafeiratos, Elsevier Publishers Paperback ISBN: 9780128167236 (2019).
121 Single Sb sites for efficient electrochemical CO2 reduction; M. W. Jia, S. Hong, T. -S. Wu, Xin Li, Y. L. Soo and Z. Y. Sun,* Chem. Commun. 55, 12024-12027 (2019). DOI: 10.1039/C9CC06178A.
120 Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance; M. L. Zhang, T. -S. Wu, S. Hong, Q. Fan, Y. L. Soo, J. Masa, J. S. Qiu and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 15030-15035 (2019). DOI:10.1021/acssuschemeng.9b03502.
119 Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO; S. L. Chu, S. Hong, J. Masa, X. Li, and Z. Y. Sun,* Chem. Commun. 55, 12380-12383 (2019). DOI: 10.1039/C9CC05435A.
118 Efficient bifunctional Co/N-dual-doped carbon electrocatalysts for oxygen reduction and evolution reaction; M. N. Han, M. J. Shi, J. Wang, M. L. Zhang, C. Yan,* J. T. Jiang, S. H. Guo, Z. Y. Sun* and Z. H. Guo, Carbon 153, 575-584 (2019). DOI: 10.1016/j.carbon.2019.07.075.
117 ZIF 67 derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction; Y. N. Gao, Z. S. Han, S. Hong,* T. B. Wu, X. Li, J. S. Qiu, and Z. Y. Sun,* ACS Appl. Energy Mater. 2, 6071-6077 (2019). DOI: 10.1021/acsaem.9b01135.
116 Understanding the antifouling mechanism of zwitterionic monomer grafted PVDF membranes: A comparative experimental and molecular dynamics simulation study; Z. Y. Liu,* Q. Jiang, Z. Q. Jin, Z. Y. Sun, W. J. Ma and Y. L. Wang,* ACS Appl. Mater. Interfaces 11, 14408-14417 (2019). DOI: 10.1021/acsami.8b22059.
115 Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure; Z. Y. Sun,* R. P. Huo, C. Choi, S. Hong, T. S. Wu, Z. S. Han, Y. C. Liu, C. Yan, J. S. Qiu,* Y. L. Soo, and Y. S. Jung,* Nano Energy 62, 869-875 (2019). 10.1016/j.nanoen.2019.06.019.
114 Highly porous metalloporphyrin covalent ionic frameworks with well defined functional groups as excellent catalysts for CO2 cycloaddition; J. H. Liu, G. Y. Zhao, O. Cheung, L. N. Jia, Z. Y. Sun*, and S. J. Zhang,* Chem. Eur. J. 25, 9052-9059 (2019). DOI: 10.1002/chem.201900992.
113 Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors; M. J. Shi, C. Yang, C. Yan*, J. T. Jiang, Y. C. Liu, Z. Y. Sun,* W. L. Shi, J. Gao, Z. H. Guo, and J. H. Ahn,* NPG Asian Mater. 11, 61 (2019). DOI: 10.1038/s41427-019-0161-7.
112 A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalyst; Y. N. Sun, M. L. Zhan, L. Zhao, Z. Y. Sui, Z. Y. Sun*, and B. H. Han,* Adv. Mater. Interf. 6, 1900592 (2019). DOI: doi.org/10.1002/admi.201900592.
111 Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia; S. Z. Liu, S. B. Wang, Y. Jiang, Z. Q. Zhao, G. Y. Jiang*, and Z. Y. Sun,* Chem. Eng. J. 373, 572-579 (2019). (ESI paper)
110 Graphene-based materials for electrochemical CO2 reduction; T. Ma, Q. Fan, X. Li, T. B. Wu,* J. S. Qiu and Z. Y. Sun,* J. CO2 Util. 30, 168-182 (2019).
109 Nitrogen fixation by Ru single-atom electrocatalytic reduction; H. C. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. S. Han, M. W. Jia, Q. Fan, Y. N. Gao, H. H. Wang,* A. W. Robertson, S. Hong, Y. Jung*, and Z. Y. Sun,* Chem 5, 204-214 (2019). DOI: 10.1016/j.chempr.2018.10.007 (EIS).
108 Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction; Z. S. Han, C. Choi, S. Hong, Q. Fan, Y. Jung,* J. S. Qiu and Z. Y. Sun,* Appl. Catal. B Environ. 257, 117896 (2019). DOI:10.1016/j.apcatb.2019.117896.
107 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction; Q. Fan, C. Choi, C. Yan, Y. C. Liu, J. S. Qiu, S. Hong,* Y. Jung*, and Z. Y. Sun,* Chem. Commun. 55, 4246-4249 (2019). DOI: 10.1039/C9CC00985J.
106 Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics; Q. Fan, J. W. Huang, N. N. Dong, Y. C. Liu, C. Yan, X. Li, S. Z. Liu, J. Wang,* J. S. Qiu, and Z. Y. Sun,* ACS Photonics 6, 1051-1057 (2019). DOI: 10.1021/acsphotonics.9b00122.
105 Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites; Z. Q. Zhao, S. Hong, C. Yan,* C. Choi, Y. Jung,* Y. C. Liu, X. Li, S. Z. Liu, J. S. Qiu ,and Z. Y. Sun,* Chem. Commun. 55, 7171-7174 (2019) DOI: 10.1039/C9CC02291K.
104 Single-atom catalysis of electrochemical CO2 reduction; M. W. Jia, Q. Fan, M. L. Zhang, S. Z. Liu, J. S. Qiu and Z. Y. Sun,* Curr. Opin. Green Sustainable Chem. 16, 1-6 (2019). DOI: 10.1016/j.cogsc.2018.11.002.
103 Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets; S. Z. Liu, H. B. Wang, M. M. You, Z. Q. Zhao, G. Y. Jiang,* J. S. Qiu, B. J. Wang*, and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 6813-6820 (2019). DOI: 10.1021/acssuschemeng.8b06134.
102 Supercritical fluid facilitated exfoliation and processing of two-dimensional materials; Z. Y. Sun,* Q. Fan, M. L. Zhang, S. Z. Liu, H. C. Tao, and J. Texter,* Adv. Sci. 6, 1901084 (2019). DOI: 10.1002/advs.201901084.
101 Ultrasound-assisted nitrogen and boron co-doping of graphene oxide for efficient oxygen reduction reaction; M. L. Zhang, H. C. Tao, Y. C. Liu, C. Yan, A. W. Robertson, S. Z. Liu, J. Masa,* J. S. Qiu, and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 3434-3442 (2019).
2018
100 Carbon supported Ni for electrochemical CO2 reduction; M. W. Jia, C. Choi, T. S. Wu, Chen Ma, Peng Kang, H. C. Tao, Q. Fan, S. Hong, Y. L. Soo, Y. Jung,* S. Z. Liu, and Z. Y. Sun,* Chem. Sci. 9, 8775-8780 (2018). (Selected as 2018 Chemical Science HOT Article Collection; Most popular 2018-2019 catalysis articles; Most popular 2018-2019 nanoscience articles; outside front cover; highlighted by RSC).
99 Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution; Y. N. Gao, M. L. Zhang, J. J. Ding, J. Masa,* S. Z. Liu, Z. Y. Sun,* Electrochem. Commun. 97, 27-31 (2018).
98 Graphene and its hybrids in photocatalysis; S. Z. Liu, Z. Q. Zhao, Y. N. Gao and Z. Y. Sun,* Current Graphene Science 2, 79-96 (2018).
97 Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies; Q. Fan, M. L. Zhang, M. W. Jia, S. Z. Liu, J. S. Qiu and Z. Y. Sun,* Mater. Today Energy 10, 280-301 (2018).
96 Tuning the surface properties of Pd to facilitate electrocatalytic CO2 reduction to CO with reduced overpotential; Z. S. Han, C. Choi, H. C. Tao, A. W. Robertson, Q. Fan, Y. Jung,* S. Z. Liu and Z. Y. Sun,* Catal. Sci. Techn. 8, 3894-3900 (2018).
95 Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction; M. L. Zhang, Y. L. Song, H. C. Tao, C. Yan, Y. C. Liu, S. Z. Liu, R. T. Tao, X. Zhang,* and Z. Y. Sun,* Sustainable Energy Fuels 2, 1820-1827 (2018).
94 New solvent-stabilized few-layer black phosphorus for antibacterial applications; Z. Y. Sun,* Y. Q. Zhang, H. Yu, C. Yan, Y. C. Liu, S. Hong, H. C. Tao, A. W. Robertson, Z. Wang,* A. A. H. Pádua, Nanoscale 10, 12543-12553 (2018).
93 Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with Brønsted acid site; P. Zhao, L. Ye, Z. Y. Sun, B. T. W. Lo, H. Woodcock, C. Huang, A. Kirkland, C. Tang, K. Suriyi and S. C. Edman Tsang,* J. Am. Chem. Soc. 140, 6661-6667 (2018).
92 Heterogeneous catalysis of CO2 hydrogenation to C2+ products; Y. N. Gao, S. Z. Liu, Z. Q. Zhao, H. C. Tao, and Z. Y. Sun,* Acta Phys. -Chim. Sin. 34, 858-872 (2018). (Invited)
91 Nanosheet catalysis of carbon dioxide photoreduction: Fundamentals and challenges; Z. Y. Sun, N. Talreja, H. C. Tao, J. Texter, M. Muhler,* J. Strunk and J. F. Chen,* Angew. Chem. Int. Ed. 57, 7610-7627 (2018).
90 Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to γ-valerolactone; H. C. Tao, J. J. Ding, C. Xie, J. l. Song* and Z. Y. Sun,* Nanotechnology 29, 075708 (2018).
89 Doping palladium with tellurium for highly selective electrocatalytic reduction of aqueous CO2 to CO; H. C. Tao, X. F. Sun, Z. S. Han, Q. G. Zhu, A. W. Robertson, T. Ma, Q. Fan, B. X. Han,* Y. Jung* and Z. Y. Sun,* Chem. Sci. 9, 483-487 (2018). This article is part of the themed collection: In celebration of Chinese New Year.
88 Nitrogen-doped and nanostructured carbons withhigh surface area for enhanced oxygen reduction reaction; Z. Y. Sui, X. Li, Z. Y. Sun,* H. C. Tao, P. Y. Zhang, L. Zhao and B. H. Han,* Carbon 126, 111-118 (2018).
2017
87 Nonliear absorption induced transparency and optical limiting of black phosphorus nanosheets; J. W. Huang, N. N. Dong, S. F. Zhang, Z. Y. Sun* and J. Wang,* ACS Photonics 4, 3063-3070 (2017).
86 Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: Current status and future challenges; T. Ma, Q. Fan, H. C. Tao, Z. S. Han, M. W. Jia, Y. N. Gao, W. J. Ma* and Z. Y. Sun,* Nanotechnology 28, 472001 (2017).
85 Fundamentals and challenges in electrochemical reduction of CO2 using two-dimensional materials; Z. Y. Sun,* T. Ma, H. C. Tao, B. X. Han,* Chem 3, 560-587 (2017).
84 Exfoliation of stable 2D black phosphorus for device fabrication; Y. Q. Zhang, N. N. Dong, H. C. Tao, C. Yan, J. W. Huang, T. F. Liu, A. W. Robertson, J. Texter, J. Wang* and Z. Y. Sun,* Chem. Mater. 29, 6445-6456 (2017).
83 Two-dimensional nanosheets for electrocatalysis in energy generation and conversion; H. C. Tao, Y. N. Gao, N. Talreja, F. Guo, J. Texter,* C. Yan and Z. Y. Sun,* J. Mater. Chem. A 5,
7257-7284 (2017). This article is part of the themed collections: Recent Review Articles, JMC A Editor’s choice collection: Recent advances in solar fuels and photocatalysis research and 2017 Journal of Materials Chemistry A Most Accessed Manuscripts. (ESI论文).
82 High-efficiency mixing process in secondary rotating stream; D. G. Wang, Y. H. Wang, Z. Y. Sun, R. T. Zhou, B. K. Zhu and R. K. Zhang, Chem. Eng. J. 313, 807-814 (2017).
81 N-doping of graphene oxide at low temperature for oxygen reduction reaction; H. C. Tao, C. Yan, A. W. Robertson, Y. N. Gao, J. J. Ding, Y. Q. Zhang, T. Ma and Z. Y. Sun,* Chem. Commun. 53,873-876(2017). (ESI论文)
80 Scalable exfoliation and dispersion of two-dimensional materials - An update; H. C. Tao, Y. Q. Zhang, Y. N. Gao, Z. Y. Sun* and J. Texter,* Phys. Chem. Chem. Phys. 19, 921-960(2017). 2017 PCCP HOT Articles. (ESI论文)
79 Graphene/porous beta TiO2 nanocomposites prepared through a simple hydrothermal method;Y. Q. Zhang, H. C. Tao, Y. N. Gao, T. Ma, J. J. Ding and Z. Y. Sun,* Curr. Graphene Sci. 1, 64-70 (2017).
2016
78 Few-layer graphene modified with nitrogen-rich metallomacrocyclic complexes as precursor for bifunctional oxygen electrocatalysts; D. M. Morales, J. Masa, C. Andronescu, Y. U. Kayran, Z. Y. Sun and W. Schuhmann, Electrochimica Acta 222, 1191-1199 (2016).
77 Oxygen electrochemistry on two dimensional nanosheets; H. C. Tao and Z. Y. Sun,* Book chapter in "Nanosheets and nanospheres: Types, applications and research insights", Nova Science Publishers, in press.
76 Preparation method of two-dimensional material; Z. Y. Sun, H. C. Tao, Y. Wei, J. J. Ding, Y. Q. Zhang and T. Ma, China Patent CN 105895913 A 20160824 (2016).
75 Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries; Z. Y. Sun,* E. Madej, A. Genc, M. Muhler, J. Arbiol, W. Schuhmann and E. Ventos,* Chem. Commun. 52, 7348-7351 (2016).
74 Hydrazine-assisted Liquid Exfoliation of MoS2 for Catalytic Hydrode oxygenation of 4-Methylphenol; G. L. Liu, H. L. Ma, I. Teixeira, Z. Y. Sun, Q. N. Xia, X. L. Hong and S. C. E. Tsang,* Chem. Eur. J. 22, 2910-2914 (2016).
73 Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution; J. Masa,* P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Y. Sun, C. Somsen, M. Muhler and W. Schuhmann,* Adv. Energy Mater. 6, 1670072 (2016).
2015
72 High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction; Z. Y. Sun,* J. Masa, P. Weide, S. M. Fairclough, A. W. Robertson, P. Ebbinghaus, J. H. Warner, S. C. E. Tsang, M. Muhler and W. Schuhmann, J. Mater. Chem. A. 3, 15444-15450 (2015).
71 Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene;Y. Wei and Z. Y. Sun,* Curr. Opin. Colloid Interface Sci. 20, 311-321 (2015).
70 One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries; Z. Y. Sun,* E. Madej, C. Wiktor, I. Sinev, R. A. Fischer, T. G. van, M. Muhler, W. Schuhmann and E. Ventosa,* Chem. Eur. J. 21, 16154-16161 (2015).
2014
69 A carbon-coated TiO2 (B) nanosheet composite for lithium ion batteries; Z. Y. Sun,* X. Huang, M. Muhler, W. Schuhmann and E. Ventosa,* Chem. Commun. 50, 5506-5509 (2014).
68 Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methylpyrrolidone and surfactants; Z. Y. Sun,* X.Huang, F. Liu, X. N. Yang,* C. Roesler, R. A. Fischer, M. Muhler and W. Schuhmann, Chem. Commun. 50, 10382-10385 (2014).
67 High-concentration graphene dispersions with minimal stabilizer: A scaffold for enzyme immobilization for glucose oxidation; Z. Y. Sun,* J. Vivekananthan, D. A. Guschin, X. Huang, V. Kuznetsov, P. Ebbinghaus, A. Sarfraz, M. Muhler and W. Schuhmann,* Chem. Eur. J. 20, 5752-5761 (2014).
66 Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries; Z. Y. Sun,* K. P. Xie, Z. A. Li, I. Sinev, P. Ebbinghaus, A. Erbe, M. Farle, W. Schuhmann, M. Muhler and E. Ventosa,* Chem. Eur. J. 20, 2022-2030 (2014).
65 MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high performance bifunctional oxygen electrodes; J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Y. Sun, S. Gruetzke, P. Weide, M. Muhler* and W. Schuhmann,* Angew. Chem. Int. Ed. 53, 8508-8512 (2014).
2013
64 Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications; Z. Y. Sun, N. N. Dong, K. P. Wang, D. König, T. C. Nagaiah, M. D. Sanchez, A. Ludwig, X. Cheng, W. Schuhmann, J. Wang* and M. Muhler*, Carbon 62, 182-192 (2013).
63 High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity; Z. Y. Sun,* S. Poller, X. Huang, D. Guschin, C. Taetz, P. Ebbinghaus, J. Masa, A. Erbe, A. Kilzer, W. Schuhmann and M. Muhler, Carbon 64, 288-294 (2013).
62 Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etching process; Z. Y. Sun, N. N. Dong, K. P. Xie, W. Xia, D. König, T. C. Nagaiah, M. D. Sanchez, P. Ebbinghaus, A. Erbe, X. Y. Zhang, A. Ludwig, W. Schuhmann, J. Wang* and M. Muhler,* J. Phys. Chem. C 117, 11811-11817 (2013).
61 Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction; J. Masa, A. Zhao, W. Xia, Z. Y. Sun, B. Mei, M. Muhler and W. Schuhmann,* Electrochem. Commun. 34, 113-116 (2013).
2012
60 Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement; Z. Y. Sun, J. Masa, W. Xia, D. König, A. Ludwig, Z. A. Li, M. Farle, W. Schuhmann and M. Muhler,* ACS Catal. 2, 1647-1653 (2012).
59 Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction; Z. Y. Sun, J. Masa, Z. M. Liu,* W. Schuhmann and M. Muhler,* Chem. Eur. J. 18, 6972-6978 (2012).
58 Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst; W. J. Xiao, Z. Y. Sun, S. Chen, H. Y. Zhang, Y. H. Zhao, C. L. Huang, Z. M. Liu,* RSC Adv. 2, 8189-8193 (2012).
57 One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance; H. Y. Zhang, C. L. Huang, R. Tao, Y. F. Zhao, S. Chen, Z. Y. Sun, Z. M. Liu,* J. Mater. Chem. 22, 3354-3359 (2012).
56 Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance; Y. F. Zhao, Y. Xie, Z. Y. Sun, H. Y. Zhang, R. T. Tao, C. L. Huang and Z. M. Liu,* Sci. China Chem. 55, 1294-1302 (2012).
2011
55 CO2-mediated synthesis of ZnO nanorods and their application in sensing ethanol vapor; G. M. An, Z. Y. Sun, Y. Zhang, K. L. Ding, Y. Xie, R. T. Tao, H. Y. Zhang and Z. M. Liu,* J. Nanosci. Nanotechnol. 11, 1252-1258 (2011).
54 Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene; C. L. Huang, H. Y. Zhang, Z. Y. Sun, Y. F. Zhao, S. Chen, R. T. Tao, Z. M. Liu,* J. Colloid Interface Sci. 364, 298-303 (2011).
53 Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating; Z. Y. Sun, H. Y. Zhang, Y. F. Zhao, C. L. Huang, R. T. Tao, Z. M. Liu* and Z. D. Wu, Langmuir 27, 6244-6251 (2011).
52 Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading; Z. Y. Sun, Z. Li, C. L. Huang, Y. F. Zhao, H. Y. Zhang, R. T. Tao, Z. M. Liu,* Carbon 49, 4376-4384 (2011).
51 In-situ loading ultrafine AuPd particles on ceria: highly active catalyst for solvent-free selective oxidation of benzyl alcohol; H. Y. Zhang, Y. Xie, Z. Y. Sun, R. T. Tao, C. L. Huang, Y. F. Zhao and Z. M. Liu,* Langmuir 27, 1152-1157 (2011).
50 High-intensity sonication-assisted synthesis of supported noble metal nanocatalysts; Z. Y. Sun, S. Chen, C. L. Huang, Y. F. Zhao, H. Y. Zhang, Z. Li and Z. M. Liu,* Scientia. Sinica. Chimica. 41, 1366-1371 (2011).
2010
49 In situ loading of palladium nanoparticles on mica and their catalytic applications; R. T. Tao, Z. Y. Sun, Y. Xie, H. Y. Zhang, C. L. Huang, Y. F. Zhao and Z. M. Liu,* J. Colloid Interface Sci. 353, 269-274 (2010).
48 Arginine-mediated synthesis of highly efficient catalysts for transfer hydrogenations of ketones; R. T. Tao, Y. Xie, G. An, K. L. Ding, H. Y. Zhang, Z. Y. Sun and Z. M. Liu,* J. Colloid Interface Sci. 351, 501-506 (2010).
47 Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells; Z. Y. Sun, X. Wang, Z. M. Liu,* H. Y. Zhang, P. Yu and L. Q. Mao,* Langmuir 26, 12383-12389 (2010).
46 Chitosan-mediated synthesis of mesoporous alpha-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane; C. L. Huang, H. Y. Zhang, Z. Y. Sun and Z. M. Liu,* Sci. China Chem. 53, 1502-1508 (2010).
45 Control of optical limiting of carbon nanotube dispersions by changing solvent parameters; J. Wang,* D. Fruchtl, Z. Y. Sun, J. N. Coleman and W. J. Blau, J. Phys. Chem. C. 114, 6148-6156 (2010).
44 Method for preparing composite composed of carbon nanotubes and metal, metal oxide, or metal hydroxide; Z. Y. Sun, Z. M. Liu, G. Y. Yang, Y. F. Zhao, Y. Xie, H. Y. Zhang, R. T. Tao and C. J. Huang, China Patent CN 101787502 A 20100728 (2010).
43 Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Y. Sun, B. X. Han and Z. M. Liu,* Langmuir 26, 5129-5134 (2010).
42 Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Y. Sun, B. X. Han and Z. M. Liu,* Langmuir 26, 10294-10302 (2010).
41 Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes; Z. Y. Sun, H. Y. Zhang, G. M. An, G. Y. Yang and Z. M. Liu,* J. Mater. Chem. 20, 1947-1952 (2010).
40 The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions; Y. Xie, K. L. Ding, Z. M. Liu,* J. J. Li, G. M. An, R. T. Tao, Z. Y. Sun and Z. Z. Yang,* Chem. Eur. J. 16, 6687-6692 (2010).
39 The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes; Z. Y. Sun, Y. F. Zhao, Y. Xie, R. T. Tao, H. Y. Hong, C. L. Huang and Z. M. Liu,* Green Chem. 12, 1007-1011 (2010).
38 Green solvent-based approaches for synthesis of nanomaterials; Z. M. Liu* and Z. Y. Sun, Sci. China Chem. 53, 372-382 (2010).
37 New solvents for nanotubes: Approaching the dispersibility of surfactants; S. D. Bergin, Z. Y. Sun, P. Streich, J. Hamilton and J. N. Coleman,* J. Phys. Chem. C. 114, 231-237 (2010).
2004-2009
36 Effects of ambient conditions on solvent-nanotube dispersions: Exposure to water and temperature variation; Z. Y. Sun,* I. O'Connor, S. Bergin and J. Coleman, J. Phys. Chem. C. 113, 1260-1266 (2009).
35 In situ controllable loading of ultrafine noble metal particles on titania; Y. Xie, K. L. Ding, Z. M. Liu,* R. T. Tao, Z. Y. Sun, H. Y. Zhang and G. M. An, J. Am. Chem. Soc. 131, 6648-6649 (2009).
34 Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures; S. Bergin, Z. Y. Sun, D. Rickard, P. Streich, J. Hamilton and J. Coleman,* ACS Nano 3, 2340-2350 (2009).
33 p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution;H. Y. Zhang, Y. Xie, Z. M. Liu,* R. T. Tao, Z. Y. Sun, K. L. Ding, and G. M. An, J. Colloid. Interf. Sci., 338, 468-473 (2009).
32 Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives; Z. Y. Sun,* V. Nicolosi, S. Bergin and J. Coleman,* Nanotechnology 19, 485702/1-485702/9 (2008).
31 High-yield production of graphene by liquid-phase exfoliation of graphite; Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Y. Sun, S. De, I. T. Mc Govern, B. Holland, M. Byrne, Y. K. Gun’KO, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman,* Nat. Nanotech. 3, 563-568 (2008).
30 Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation; S. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Y. Sun, W. Blau and J. N. Coleman,* J. Phys. Chem. C. 112, 972-977 (2008).
29 Quantitative evaluation of surfactant-stabilized single-walled carbon Nanotubes: Dispersion quality and its correlation with zeta potential; Z. Y. Sun, V. Nicolosi, D. Rickard, S. Bergin, D. Aherne and J. N. Coleman,* J. Phys. Chem. C. 112, 10692-10699 (2008).
28 Towards solutions of single-walled carbon nanotubes in common solvents;S. Bergin, V. Nicolosi, P. Streich, S. Giordani, Z. Y. Sun, A. Windle, P. Ryan, N. Niraj, Z. T. Wang, L. Carpenter, W. J. Blau, J. J. Boland, J. P. Hamilton,* J. N. Coleman,* Adv. Mater. 20, 1876-1881 (2008).
27 Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution; Z. Y. Sun, X. R. Zhang, B. X. Han, Y. Y. Wu, G. M. An, Z. M. Liu,* S. D. Miao, and Z. J. Miao, Carbon, 45, 2589-2596 (2007).
26 Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation; G. M. An, W. H. Ma, Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and K. L. Ding, Carbon 45, 1795-1801 (2007).
25 Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes; Z. Y. Sun, Z. M. Liu,* B. X. Han and G. M. An, Mater. Lett. 61, 4565-4568 (2007).
24 Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells; G. M. An, P. Yu, L. Q. Mao, Z. Y. Sun, Z. M. Liu,* S. D. Miao, Z. J. Miao and K. L. Ding, Carbon 45, 536-542 (2007).
23 Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution; Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and G. M. An, J. Colloid. Interf. Sci. 304, 323-328 (2006).
22 Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethylamine; Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, J. M. Du and Z. J. Miao, Carbon 44, 888-893(2006).
21 Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol; Z. Y. Sun, X. R. Zhang, N. Na, Z. M. Liu,* B. X. Han and G. M. An, J. Phys. Chem. B 110, 13410-13414 (2006).
20 Microwave-assisted synthesis of Pt nanocrystals and deposition on carbon nanotubes in ionic liquids; Z. M. Liu,* Z. Y. Sun, B. X. Han, J. L. Zhang, J. Huang, J. M. Du and S. D. Miao, J. Nanosci. Nanotechnol. 6, 175-9 (2006).
19 Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene; S. D. Miao, Z. M. Liu,* B. X. Han, J. Huang, Z. Y. Sun, J. L. Zhang and T. Jiang, Angew. Chem. Int. Ed. 45, 266-269 (2006).
18 Synthesis of noble metal/carbon nanotube composites in supercritical methanol; Z. Y. Sun, L. Fu, Z. M. Liu,* B. X. Han, Y. Q. Liu and J. M. Du, J. Nanosci. Nanotechnol. 6, 691-697 (2006).
17 Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue; S. D. Miao, Z. M. Liu,* B. X. Han, J. L. Zhang, X. Yu, J. M. Du and Z. Y. Sun, J. Mater. Chem. 16, 579-584 (2006).
16 Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid; Z. J. Miao, Y. Wang, Z. M. Liu,* J. Huang, B. X. Han, Z. Y. Sun and J. M. Du, J. Nanosci. Nanotechnol. 6, 227-230 (2006).
15 Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B; S. D. Miao, Z. M. Liu,* B. X. Han, H. W. Yang, Z. J. Miao and Z. Y. Sun, J. Colloid. Interf. Sci. 301, 116-122 (2006).
14 A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates; Z. Y. Sun, H. Q. Yuan, Z. M. Liu, B. X. Han and X. R. Zhang,* Adv. Mater. 17, 2993-2997 (2005).
13 Carbon onions synthesized via thermal reduction of glycerin with magnesium; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han,* Z. Y. Sun and Y. Huang, Mater. Chem. Phys. 93, 178-180 (2005).
12 Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar; S. D. Miao, Z. M. Liu,* H. W. Ma, B. X. Han, J. M. Du, Z. Y. Sun and Z. J. Miao, Micropor. Mesopor. Mat. 83, 277-282 (2005).
11 Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties; J. M. Du, L. Fu, Z. M. Liu, B. X. Han,* Z. H. Li, Y. Q. Liu,* Z. Y. Sun and D. B. Zhu, J. Phys. Chem. B 109, 12772-12776 (2005).
10 Solvothermal synthesis of mesoporous Eu2O3-TiO2 composites; Z. M. Liu,* J. L. Zhang, B. X. Han, J. M. Du, T. C. Mu, Y. Wang and Z. Y. Sun, Micropor. Mesopor. Mat. 81, 169-174 (2005).
9 Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water; Z. Y. Sun, Z. M. Liu,* B. X. Han,* Y. Wang, J. M. Du, Z. L. Xie, G. J. Han, Adv. Mater. 17, 928-932 (2005).
8 Phase-separation-induced micropatterned polymer surfaces and their applications; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, J. L. Zhang and D. H. Sun, Adv. Funct. Mater. 15, 655-663 (2005).
7 Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, Y. Huang, G. Y. Yang, Langmuir 21, 833-836 (2005).
6 Carbon nanoflowers synthesized by a reduction-pyrolysis-catalysis route; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han, Z. Y. Sun and Y. Huang, Mater. Lett. 59, 456-458 (2005).
5 Replication of biological organizations through a supercritical fluid route; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, J. M. Du, J. L. Zhang, T. Jiang, W. Z. Wu and Z. J. Miao, Chem. Commun. 23, 2948-2950 (2005).
4 Fabrication and characterization of magnetic carbon nanotube composites; Z. Y. Sun, Z. M. Liu,* Y. Wang, B. X. Han, J. M. Du and J. L. Zhang, J. Mater. Chem. 15, 4497-4501 (2005).
3 In situ Eu2O3 coating on the walls of mesoporous silica SBA-15 in supercritical ethane plus ethanol mixture; Z. M. Liu,* J. Q. Wang, J. L. Zhang, B. X. Han,* Y. Wang and Z. Y. Sun, Micropor. Mesopor. Mat. 75, 101-105 (2005).
2 Synthesis of tubular graphite cones through a catalytically thermal reduction route; Z. Y. Sun, Z. M. Liu,* J. M. Du, Y. Wang, B. X. Han, T. C. Mu, J. Phys. Chem. B 108, 9811-9814 (2004).
1 Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2; X. H. Dai, Z. M. Liu,* B. X. Han, Z. Y. Sun, Y. Wang, J. Xu,* X. L. Guo, N. Zhao and J. Chen, Chem. Commun. 19, 2190-2191 (2004).