179 Editorial: Preparation of functional materials and utilization of renewable resources in green solvents; H. Fan, J. Song, H. Liu, Z. Sun, Z. Wang. Front. Chem.  2022, DOI: 10.3389/fchem.2022.1085405

178 CO2 reduction; X. Y. Li, L. Hao, Z. Sun,* et al. EES Catal. 2022, to be submitted (Invited).

177 CO2 reduction; Y. Ruan, L. Hao, and Z. Sun,*  et al. Chem. Euro. J. (2022). To be submitted (Invited). 

176 Atomically dispersed Mn for elecrochemical CO2 reduction with tunable performance; Z. Yao, X. Zhan, X. Ruan, W. Li, Y. Xu, X. Chen, A. W. Robertson, R. Tao, S. Hong,* L. Hao,* and Z. Sun.* Chem. Asian J. (2022). DOI: 10.1002/asia.202200997.

175 Elecrochemical CO2 reduction; L. Hao, Z. Sun,* et al. Sustainable Chem. Climate Action (2022) (invited). To be submitted.

174 Single-atom catalysts for electrochemical N2 reduction to NH3; M. S. Iqbal, Z. Yao, Y. Yuan, R. Iftikhar, L. Hao,* A. M. Robertson, S. M. Imran, and Z. Sun.* Rare Met. (2022). DOI: 10.1007/s12598-022-02215-7.

173 Elecrochemical CO2 reduction; M. Yang,* L. Hao, Z. Sun,* et al. (2022). To be submitted.

172 Pre-adsorbed H- assisted N2 activation on single-atom cadmium-O5 decorated In2O3 for efficient NH3 electrosynthesis; Z. Yao, S. Liu, H. Liu, Y. Ruan, S. Hong, T.-S. Wu, L. Hao, Y.-L. Soo, P. Xiong, M. M.-J. Li, A. W. Robertson, Q. Xia, L.-X. Ding* and Z. Sun,* Adv. Funct. Mater. 2209843 (2022). DOI: 10.1002/adfm. 202209843.

171 Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia; X. Hui, L. Wang, Z. Yao, L. Hao* and Z. Sun.* Front. Chem. 10, 978078 (2022). DOI: 10.3389/fchem.2022.978078.

170 Elecrochemical N2 reduction; M. Yang, Y. Ruan, W. Li, Z. Yao, L. Hao, Z. Sun,* et al. Inorg. Chem. Front. (2022) (invited). To be submitted.

169 Boosting CO2 electroreduction to multicarbon products via tuning of the copper surface charge; D. Wang, L. Li, Q. Xia, S. Hong, L. Hao,* A. W. Robertson and Z. Sun,* ACS Sustainable Chem. Eng. 10 (34), 11451–11458 (2022). DOI: 10.1021/acssuschemeng.2c03963.

168 Elecrochemical CO2 reduction; J. Li, F. Zhang,* X. Zhan, H. Guo, H. Zhang, W.-Y. Zan, Z. Sun,* and  X. Zhang,* et al. Chin. J. Catal. (2022). Under revision.

167 Battery; L. Hao, Z. Sun,* et al. (2022). Under review.

166 Engineering CuO-HfO2 interface toward enhanced CO2 electroreduction to C2H4; X. Li, L. F. Li, L. Wang, Q. Xia, L. Hao, X. Zhan, A. W. Robertson and Z. Sun.* Chem. Commun. 58, 7412–7415 (2022). DOI: 10.1039/D2CC01776H.

165 Rigorous assessment of Cl-based anolytes on electrochemical ammonia synthesis; Z. Lv, L. Hao, Z. Yao, W. Li, A. W. Robertson and Z. Sun.* Adv. Sci. 2204205 (2022).

164 Design of porous core-shell manganese oxides to boost electrocatalytic dinitrogen reductionY. Gao, Q. Xia*, L. Hao*, A. W. Robertson and Z. Sun.* ACS Sustainable Chem. Eng. 10, 1316–1322 (2022). DOI: 10.1021/acssuschemeng.1c07824.

163 Efficient electrocatalytic CO2 reduction to CO by tuning CdO-carbon black interface; L. Wang, X. Li, S. Hong, X. Zhan, D. Wang, L. Hao* and Z. Sun.* "CO2转化专辑",高等学校化学学报》, Chem. J. Chinese Universities 43 (7), 20220317 (2022).

162 Thermal catalysis of CO2L. Hao, Z. Sun,* Book chapter for an RSC Press book  (2022, Invited). In press.

161 Selective electroreduction of CO2 and CO to C2H4 by synergistically tuning nanocavities and surface charge of copper oxideX. Li, L. F. Li, Q. Xia, S. Hong, L. Hao, A. W. Robertson, H. Zhang, T. W. B. Lo, Z. Sun.* ACS Sustainable Chem. Eng. 10, 6466−6475 (2022). DOI: 10.1021/acssuschemeng.2c01600.

160 Lowering C−C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO; W. Li, L. Li, Q. Xia, S. Hong, L. Wang, Z. Yao, T. -S. Wu, Y. -L. Soo, H. Zhang,T. W. B. Lo, A. W. Robertson, Q. Liu,* L. Hao,* and Z. Sun*. Appl. Catal. B Environ 318, 121823 (2022). DOI: 10.1016/j.apcatb.2022.121823.

159 Electrocatalytic coupling of CO2 and N2 for urea synthesisJ. Wang, Z. Yao, L. Hao,* and Z. Sun.* Curr. Opin. Green Sustainable Chem. 37, 100648 (2022). (For a Special Issue of "CO2 Capture and Chemistry"). DOI: 10.1016/j.cogsc.2022.100648.

158 Tuning the coordination structure of single atoms and their interaction with support for CO2 electroreduction; Y. Chen, L. Wang, Z. Yao, L. Hao, X. Tan,* J. Masa, A. W. Robertson, and Z. Sun.* Acta Phys. -Chim. Sin. 38, 2207024 (2022). DOI: 10.3866/PKU.WHXB202207024.

157 Single Nb atom modified anatase TiO2(110) for efficient electrocatalytic nitrogen reduction reaction; Y. Gao, Y. Yang, L. Hao, S. Hong, X. Tan,* T. -S. Wu, Y. -L. Soo, A. W. Robertson, Q. Yang,* and Z. Sun.* Chem Catal. 2, (2022). DOI: 10.1016/j.checat.2022.06.010

156 Single-atom molybdenum–N3 sites for selective hydrogenation of CO2 to CO; Y. Jiang, Y. Sung, C. Choi, G. J. Bang, S. Hong, X. Tan*, T. -S. Wu, Y. -L. Soo, P. Xiong, M. M. -J. LI, L. Hao, Y. Jung* and Z. Sun.* Angew. Chem. Int. Ed. e202203836 (2022). DOI: 10.1002/anie.202203836.

155 Modulation of photogenerated carrier transport by integrating of Sb2O3 with Fe2O3 for improved photoelectrochemical water oxidationF. K. Chen, H. R. Pan, Z. J. Lu, X. N. Huang, Z. Sun,* and X. Chen.* ACS Appl. Energy Mater.  5, 8844–8851 (2022). DOI: 10.1021/acsaem.2c01331.

154 Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4S. Chu, C. Kang , W. Park, Y. Han, S. Hong, L. Hao, H. Zhang, T. W. B. Lo, A. W. Robertson, Yousung Jung,* B. Han,* and Z. Sun.* SmartMat 3, 194205 (2022)DOI: 10.1002/smm2.1105.

153 Ethylene/2-butene cross-metathesis over a WO3/[SiO2+Y] catalyst mixture for propylene production: the dramatic multifunctional roles of zeolite Y; P. Zhao, Z. Sun, L. Ye, S. Wu, S. C. E. Tsang,* et al. ChemCatChem (2022). Submitted.

152 Interface engineered Sb2O3/W18O49 heterostructure for enhanced visible-light-driven photocatalytic N2 reductionX. Hui, L. Li, Q. Xia, S. Hong, L. Hao, A. W. Robertson, Z. Sun.* Chem. Eng. J. 438, 135485 (2022). DOI: 10.1016/j.cej.2022.135485.

151 CO2 electroreduction applications of atomically dispersed metallic materials;L. Hao, and Z. Sun,* et al. Book chapter for a CRC Press book  (2022). In press.

150 Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts; H. Shen, M. Yang, L. Hao, J. Strunk,* and Z.Sun.* Nano Res. 152773–2809 (2022). DOI:10.1007/s12274-021-3725-0. (Selected as cover page

149 Cadmium-based metal–organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential rangeX. Li, S. Hong, L. Hao and Z. Sun,* Chin. J. Chem. Eng. 中国化学工程学报  (英文版) (The Special Issue of "Carbon-neutrality Chemical Engineering" Organized by Academician Chunming Xu) 43, 143151 (2022). DOI:

148 Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene; L. L. Wang, X. Li, L.Hao, S. Hong,* A. W. Robertson, Z. Sun.* Chin. J. Catal. 43, 1049–1057 (2022). DOI: 10.1016/S1872-2067(21)63947-5. (Selected as cover page)

147 Engineering vacancy and hydrophobicity of two-dimensional TaTe2 for efficient and stable electrocatalytic N2 reductionZ. Zhao, J. Park, C. Choi, S. Hong, X. Hui, H. Zhang, T. W. B. Lo, A. W. Robertson, Z. Lv, Y. Jung,* Z. Sun.* The Innovation  3, 100190 (2022). (选封面主题) DOI: 


146 Facile synthesis of two-dimensional copper terephthalate for efficient electrocatalytic CO2 reduction to ethylene; Y. Zhang, Y. M. Li, Q. Tan, S. Hong,* Z. Y. Sun.* J. Exp. Nanosci. 16, 247–255 (2021). DOI: 10.1080/17458080.2021.1957844 (Special Issue of "CO2 Catalysis").

145 Improving the catalytic performance of MOFs for CO2 conversion: Strategies and perspectivesL. D. Hao, Q. N. Xia,* Q. Zhang,* J. Masa, and Z. Y. Sun.* Chin. J. Catal. 421903–1920 (2021).

144 Enhanced electrochemical CO2 reduction to ethylene over CuO by tuning oxygen vacancies and metal doping; Y. Q. Jiang, C. Choi, S. Hong, S. Chu, T.-S. Wu, Y.-L. Soo, D. Hao, Y. Jung* and Z. Y. Sun.* Cell Rep. Phys. Sci. 2, 100356 (2021). DOI: 10.1016/j.xcrp.2021.100356.

143 二氧化碳还原转化刘志敏, 孙振宇, Acta Phys. -Chim. Sin. (物理化学学报) 37, 2012024 (2021).

142 Electrocatalytic CO2 reduction to ethylene over Cu nanoparticles supported on CeO2: Effect of CeO2 exposed facets (CeO2担载Cu纳米粒子电催化CO2还原产乙烯:CeO2不同暴露晶面对催化性能的影响); S. L. Chu, X. Li, A. W. Robeartson and Z. Y. Sun.* Acta Phys. -Chim. Sin. (物理化学学报37, 2009023 (2021). 

141 Electrochemical ammonia synthesis: Mechanistic understanding and catalyst designH. D. Shen, C. Choi, J. Masa, X. Li, Y. Jung,* J. S. Qiu and Z. Y. Sun,* Chem  (2021). DOI: 10.1016/j.chempr.2021.01.009.

140 Metal oxide-based materials for electrochemical CO2 reduction (基于金属氧化物材料的二氧化碳电催化还原); L. D. Hao and Z. Y. Sun,* Acta Phys. -Chim. Sin. (物理化学学报) 37, 2009033 (2021)

139 Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries; Z. J. Lu, S. D. Yao, Y. Z. Dong, T. Wang, H. R. Pan, X. N. Huang, D. L. Wu,* Z. Y. Sun* and X. X. Chen,* J. Energy Chem. 56, 87-97 (2021). DOI: 10.1016/j.jechem.2020.07.040.


138 Recent advances in electrode materials for electrochemical CO2 reductionX. Li, J. Masa, Z. Y. Sun,* Book chapter for an ACS Symposium Series entitled "Clean Energy Materials1364, Editor(s): Lang Qin, Liang-Shih Fan, ISBN13: ‍9780841298620, eISBN: ‍9780841298613, DOI: 10.1021/bk-2020-1 (2020). 

137 An efficient pH-universal electrocatalyst for oxygen reduction: Defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogelX. K. Wang, Z. Zhang, H. Y. Gai, Z. Y. Sun* and M. H. Huang,* Mater. Today Energy 17, 100452 (2020). 

136 Single yttrium sites on carbon-coated TiO2 for efficient electrocatalytic N2 reduction; L. H. Yang, C. Choi, S. Hong, Z. M. Liu, M. M. Yang, H. D. Shen, A. W. Robertson, H. Zhang, T. W. B. Lo, Y. Jung* and Z. Y. Sun,* Chem. Commun. 56, 10910-10913 (2020). DOI: 10.1039/D0CC01136C.

135 A miracle metal@zeolite for selective conversion of syngas to ethanol; H. D. Shen and Z. Y. Sun,* Chem 6, 544-548 (2020). DOI:

134 Dramatically boost oxygen electrocatalysis of N-doped carbon for zinc-air battery;  H. M. Liu, X. N. Huang, Z. J. Lu, T. Wang, Y. M. Zhu, J. X. Cheng, Y. Wang, D. L. Wu*, Z. Y. Sun,* A. W. Robertson and X. X. Chen,* Nanoscale 12, 9628-9639 (2020). DOI: 10.1039/C9NR10800A.

133 Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixationZ. Q. Zhao, C. Choi, S. Hong, H. D. Shen, C. Yan,* J. Masa, Y. Jung,J. S. Qiu, and Z. Y. Sun,* Nano Energy 78, 105368 (2020). DOI: 10.1016/j.nanoen.2020.105368

132 Stabilization of Cu+ by tuning CuO-CeO2 interface for selective electrochemical CO2 reduction to ethylene; S. L. Chu, X. P. Yan, C. Choi, S. Hong, A. W. Robertson, J. Masa, B. X. Han, Y. Jung* and Z. Y. Sun,* Green Chem. 22, 6540-6546 (2020). DOI: 10.1039/D0GC02279A.

131 Metal-tuned W18O49 for efficient electrocatalytic N2 reduction; M. M. Yang, R. P. Huo, H. D. Shen, Q. N. Xia,* A. W. Robertson, J. S. Qiu and Z. Y. Sun,* ACS Sustainable Chem. Eng. 8, 2957-2963 (2020). DOI: 10.1021/acssuschemeng.9b07526.

130 Achieving highly selective electrochemical CO2 reduction by tuning CuO-Sb2O3 nanocomposites; Y. M. Li, S. L. Chu, H. D. Shen, Q. N. Xia,* A. W. Robertson,* J. Masa, U. Siddiqui and Z. Y. Sun,* ACS Sustainable Chem. Eng. 8, 4948-4954 (2020). DOI: 10.1021/acssuschemeng.0c00800.

129 Photocatalytic reduction of CO2 by metal-free based materials: Recent advances and future perspective; H. D. Shen, T. Peppel,* J. Stunk and Z. Y. Sun,* Solar RRL  4, 1900546 (2020). DOI:

128 Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2; F. Li, G. H. Gu, C. Choi, P. Kolla*, S. Hong, T. -S. Wu, Y. -L. Soo, J. Masa, S. Mukerjee,  Y. Jung,* J. S. Qiu and Z. Y. Sun,* Appl. Catal. B Environ. 277, 119241 (2020). DOI: 10.1016/j.apcatb.2020.119241.

127 Two-dimensional materials for energy conversion and storage; H. C. Tao, Q. Fan, T. Ma, H. Z. Liu, H. Gysling, J. Texter,* F. Guo and Z. Y. Sun,* Prog. Mater. Sci. 111, 100637 (2020). DOI: 10.1016/j.pmatsci.2020.100637.

126 Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2; Q. Fan, P. F. Hou, C. Choi, S. Hong, Y. L. Su, T. Wu, P. Kang,* Y. S. Jung* and  Z. Y. Sun,* Adv. Energy Mater. 10, 1903068 (2020). DOI: 10.1002/aenm.201903068.

125 Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range; M. L. Zhang, C. Choi, R. P. Huo, G. H. Gu, S. Hong, C. Yan, S. Y. Xu, A. W. Robertson, J. S. Qiu,* Y. Jung* and Z. Y. Sun,* Nano Energy 68, 104323 (2020). DOI: 10.1016/j.nanoen.2019.104323.

124 子液体自模板合成多孔碳氮 材料及其对CO2的吸附性能J. H. Liu, H. T. Liu, G. Y. Zhao* and Z. Y. Sun,* 过程工程学报 The Chinese Journal of Process Engineering 20, 108-115 (2020). DOI: 10.12034/j.issn.1009-606X.219164.


123 Atomically dispersed Ni sites for selective electrocatalytic CO2 reduction; F. Li, S. Hong, X. Li, J. Masa and Z. Y. Sun,* ACS Appl. Energy Mater. 2, 8836-8842 (2019). DOI: 10.1021/acsaem.9b01828.

122 Application of two-dimensional materials for electrochemical carbon dioxide reduction; X. Li and Z. Y. Sun,* Book chapter in "2D Nanomaterials for Energy Applications, 1st Edition. Graphene and Beyond", edited by Spyridon Zafeiratos, Elsevier Publishers Paperback ISBN: 9780128167236 (2019). 

121 Single Sb sites for efficient electrochemical CO2 reduction; M. W. Jia,  S. Hong, T. -S. Wu, Xin Li, Y. L. Soo and Z. Y. Sun,* Chem. Commun. 55, 12024-12027 (2019). DOI: 10.1039/C9CC06178A.

120 Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance; M. L. Zhang, T. -S. Wu, S. Hong, Q. Fan, Y. L. Soo, J. Masa, J. S. Qiu and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 15030-15035 (2019). DOI:10.1021/acssuschemeng.9b03502.

119 Synergistic catalysis of CuO/In2O3 composites for highly selective electrochemical CO2 reduction to CO; S. L. Chu, S. Hong, J. Masa, X. Li, and Z. Y. Sun,* Chem. Commun. 55, 12380-12383 (2019). DOI: 10.1039/C9CC05435A.

118 Efficient bifunctional Co/N-dual-doped carbon electrocatalysts for oxygen reduction and evolution reactionM. N. Han, M. J. Shi, J. Wang, M. L. Zhang, C. Yan,* J. T. Jiang, S. H. Guo, Z. Y. Sun*  and Z. H. Guo, Carbon 153, 575-584 (2019). DOI: 10.1016/j.carbon.2019.07.075.

117 ZIF 67 derived cobalt/nitrogen-doped carbon composites for efficient electrocatalytic N2 reduction; Y. N. Gao, Z. S. Han, S. Hong,* T. B. Wu, X. Li, J. S. Qiu, and Z. Y. Sun,* ACS Appl. Energy Mater. 2, 6071-6077 (2019). DOI: 10.1021/acsaem.9b01135.

116 Understanding the antifouling mechanism of zwitterionic monomer grafted PVDF membranes: A comparative experimental and molecular dynamics simulation study; Z. Y. Liu,* Q. Jiang, Z. Q. Jin, Z. Y. Sun, W. J. Ma and Y. L. Wang,* ACS Appl. Mater. Interfaces 11, 14408-14417 (2019). DOI: 10.1021/acsami.8b22059.

115 Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure; Z. Y. Sun,* R. P. Huo, C. Choi, S. Hong, T. S. Wu, Z. S. Han, Y. C. Liu, C. Yan, J. S. Qiu,* Y. L. Soo, and Y. S. Jung,* Nano Energy 62, 869-875 (2019). 10.1016/j.nanoen.2019.06.019.

114 Highly porous metalloporphyrin covalent ionic frameworks with well defined functional groups as excellent catalysts for CO2 cycloadditionJ. H. Liu, G. Y. Zhao, O. Cheung, L. N. Jia, Z. Y. Sun*,  and S. J. Zhang,* Chem. Eur. J. 25, 9052-9059 (2019). DOI: 10.1002/chem.201900992.

113 Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors; M. J. Shi, C. Yang, C. Yan*, J. T. Jiang, Y. C. Liu, Z. Y. Sun,* W. L. Shi, J. Gao, Z. H. Guo, and J. H. Ahn,* NPG Asian Mater. 11, 61 (2019). DOI: 10.1038/s41427-019-0161-7.

112 A N, P dual-doped carbon with high porosity as an advanced metal-free oxygen reduction catalystY. N. Sun, M. L. Zhan, L. Zhao, Z. Y. Sui, Z. Y. Sun*, and B. H. Han,* Adv. Mater. Interf. 6, 1900592 (2019). DOI:

111 Synthesis of Fe2O3  loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammoniaS. Z. Liu, S. B. Wang, Y. Jiang, Z. Q. Zhao, G. Y. Jiang*, and Z. Y. Sun,* Chem. Eng. J. 373, 572-579 (2019). (ESI paper)

110 Graphene-based materials for electrochemical CO2 reductionT. Ma, Q. Fan, X. Li, T. B. Wu,* J. S. Qiu and Z. Y. Sun,* J. CO2 Util.  30, 168-182 (2019).

109 Nitrogen fixation by Ru single-atom electrocatalytic reduction; H. C. Tao, C. Choi, L. X. Ding, Z. Jiang, Z. S. Han, M. W. Jia, Q. Fan, Y. N. Gao, H. H. Wang,* A. W. Robertson, S. Hong, Y. Jung*, and Z. Y. Sun,* Chem 5, 204-214 (2019). DOI: 10.1016/j.chempr.2018.10.007 (EIS).

108 Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction; Z. S. Han, C. Choi, S. Hong, Q. Fan, Y. Jung,* J. S. Qiu and Z. Y. Sun,* Appl. Catal. B Environ. 257, 117896 (2019). DOI:10.1016/j.apcatb.2019.117896.

107 High-yield production of few-layer boron nanosheets for efficient electrocatalytic N2 reduction; Q. Fan, C. Choi, C. Yan, Y. C. Liu, J. S. Qiu, S. Hong,* Y. Jung*, and Z. Y. Sun,* Chem. Commun. 55, 4246-4249 (2019). DOI:   10.1039/C9CC00985J

106 Liquid exfoliation of two-dimensional PbI2 nanosheets for ultrafast photonics; Q. Fan, J. W. Huang, N. N. Dong, Y. C. Liu, C. Yan, X. Li, S. Z. Liu, J. Wang,* J. S. Qiu, and Z. Y. Sun,* ACS Photonics 6, 1051-1057 (2019). DOI: 10.1021/acsphotonics.9b00122.

105 Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites; Z. Q. Zhao, S. Hong, C. Yan,* C. Choi, Y. Jung,* Y. C. Liu,  X. Li, S. Z. Liu, J. S. Qiu ,and Z. Y. Sun,* Chem. Commun. 55, 7171-7174 (2019) DOI: 10.1039/C9CC02291K.

104 Single-atom catalysis of electrochemical CO2 reduction; M. W. Jia, Q. Fan, M. L. Zhang, S. Z. Liu, J. S. Qiu and Z. Y. Sun,* Curr. Opin. Green Sustainable Chem. 16, 1-6 (2019). DOI: 10.1016/j.cogsc.2018.11.002.

103 Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets; S. Z. Liu, H. B. Wang, M. M. You, Z. Q. Zhao, G. Y. Jiang,* J. S. Qiu, B. J. Wang*, and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 6813-6820 (2019). DOI: 10.1021/acssuschemeng.8b06134.

102 Supercritical fluid facilitated exfoliation and processing of two-dimensional materials; Z. Y. Sun,* Q. Fan, M. L. Zhang, S. Z. Liu, H. C. Tao, and J. Texter,* Adv. Sci. 6, 1901084 (2019). DOI: 10.1002/advs.201901084.

101 Ultrasound-assisted nitrogen and boron co-doping of graphene oxide for efficient oxygen reduction reaction; M. L. Zhang, H. C. Tao, Y. C. Liu, C. Yan, A. W. Robertson, S. Z. Liu, J. Masa,* J. S. Qiu, and Z. Y. Sun,* ACS Sustainable Chem. Eng. 7, 3434-3442 (2019). 


100 Carbon supported Ni for electrochemical CO2 reduction; M. W. Jia, C. Choi, T. S. Wu, Chen Ma, Peng Kang, H. C. Tao, Q. Fan, S. Hong, Y. L. Soo, Y. Jung,* S. Z. Liu, and Z. Y. Sun,*  Chem. Sci. 9, 8775-8780 (2018). (Selected as 2018 Chemical Science HOT Article CollectionMost popular 2018-2019 catalysis articles; Most popular 2018-2019 nanoscience articles; outside front cover; highlighted by RSC).

99 Simple synthesis of two-dimensional MoP2 nanosheets for efficient electrocatalytic hydrogen evolution; Y. N. Gao, M. L. Zhang, J. J. Ding, J. Masa,* S. Z. Liu, Z. Y. Sun,* Electrochem. Commun. 97, 27-31 (2018).

98 Graphene and its hybrids in photocatalysis; S. Z. Liu, Z. Q. Zhao, Y. N. Gao and Z. Y. Sun,* Current Graphene Science 2, 79-96 (2018)

97 Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies; Q. Fan, M. L. Zhang, M. W. Jia, S. Z. Liu, J. S. Qiu and Z. Y. Sun,* Mater. Today Energy 10280-301 (2018).

96 Tuning the surface properties of Pd to facilitate electrocatalytic CO2 reduction to CO with reduced overpotential; Z. S. Han, C. Choi, H. C. Tao, A. W. Robertson, Q. Fan, Y. Jung,* S. Z. Liu and Z. Y. Sun,*  Catal. Sci. Techn. 8, 3894-3900 (2018).

95 Lignosulfonate biomass derived N and S co-doped porous carbon for efficient oxygen reduction reaction; M. L. Zhang, Y. L. Song, H. C. Tao, C. Yan, Y. C. Liu, S. Z. Liu, R. T. Tao, X. Zhang,* and Z. Y. Sun,* Sustainable Energy Fuels 2, 1820-1827 (2018).

94 New solvent-stabilized few-layer black phosphorus for antibacterial applications; Z. Y. Sun,* Y. Q. Zhang, H. Yu, C. Yan, Y. C. Liu, S. Hong, H. C. Tao, A. W. Robertson, Z. Wang,* A. A. H. Pádua, Nanoscale 10, 12543-12553 (2018).

93 Entrapped single tungstate site in zeolite for cooperative catalysis of olefin metathesis with Brønsted acid site; P. Zhao, L. Ye, Z. Y. Sun, B. T. W. Lo, H. Woodcock, C. Huang, A. Kirkland, C. Tang, K. Suriyi and S. C. Edman Tsang,* J. Am. Chem. Soc. 140, 6661-6667 (2018). 

92 Heterogeneous catalysis of COhydrogenation to C2+ products; Y. N. Gao, S. Z. Liu, Z. Q. Zhao, H. C. Tao, and Z. Y. Sun,* Acta Phys. -Chim. Sin. 34, 858-872  (2018). (Invited)

91 Nanosheet catalysis of carbon dioxide photoreduction: Fundamentals and challenges; Z. Y. Sun, N. Talreja, H. C. Tao, J. Texter, M. Muhler,* J. Strunk and J. F. Chen,* Angew. Chem. Int. Ed. 57, 7610-7627 (2018).

90 Supercritical diethylamine facilitated loading of ultrafine Ru particles on few-layer graphene for solvent-free hydrogenation of levulinic acid to γ-valerolactoneH. C. Tao, J. J. Ding, C. Xie, J. l. Song* and Z. Y. Sun,* Nanotechnology 29, 075708 (2018).

89 Doping palladium with tellurium for highly selective electrocatalytic reduction of aqueous CO2 to CO; H. C. Tao, X. F. Sun, Z. S. Han, Q. G. Zhu, A. W. Robertson, T. Ma, Q. Fan, B. X. Han,* Y. Jung* and Z. Y. Sun,* Chem. Sci. 9, 483-487 (2018). This article is part of the themed collection: In celebration of Chinese New Year.

88 Nitrogen-doped and nanostructured carbons withhigh surface area for enhanced oxygen reduction reaction; Z. Y. Sui, X. Li, Z. Y. Sun,* H. C. Tao, P. Y. Zhang, L. Zhao and B. H. Han,* Carbon 126, 111-118 (2018).


87 Nonliear absorption induced transparency and optical limiting of black phosphorus nanosheetsJ. W. Huang, N. N. Dong, S. F. Zhang, Z. Y. Sun* and J. Wang,* ACS Photonics 4, 3063-3070 (2017).

86 Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: Current status and future challenges; T. Ma, Q. Fan, H. C. Tao, Z. S. Han, M. W. Jia, Y. N. Gao, W. J. Ma* and Z. Y. Sun,* Nanotechnology 28, 472001 (2017)

85 Fundamentals and challenges in electrochemical reduction of CO2 using two-dimensional materials; Z. Y. Sun,* T. Ma, H. C. Tao, B. X. Han,* Chem 3, 560-587 (2017).

84 Exfoliation of stable 2D black phosphorus for device fabrication; Y. Q. Zhang, N. N. Dong, H. C. Tao, C. Yan, J. W. Huang, T. F. Liu, A. W. Robertson, J. Texter, J. Wang* and Z. Y. Sun,* Chem. Mater. 29, 6445-6456 (2017).

83 Two-dimensional nanosheets for electrocatalysis in energy generation and conversion; H. C. Tao, Y. N. Gao, N. Talreja, F. Guo, J. Texter,* C. Yan and Z. Y. Sun,* J. Mater. Chem. A 5, 7257-7284 (2017). This article is part of the themed collections: Recent Review ArticlesJMC A Editor’s choice collection: Recent advances in solar fuels and photocatalysis research and 2017 Journal of Materials Chemistry A Most Accessed Manuscripts. (ESI论文).

82 High-efficiency mixing process in secondary rotating stream; D. G. Wang, Y. H. Wang, Z. Y. Sun, R. T. Zhou, B. K. Zhu and R. K. Zhang, Chem. Eng. J. 313, 807-814 (2017).

81 N-doping of graphene oxide at low temperature for oxygen reduction reaction; H. C. Tao, C. Yan, A. W. Robertson, Y. N. Gao, J. J. Ding, Y. Q. Zhang, T. Ma and Z. Y. Sun,* Chem. Commun. 53,873-876(2017). (ESI论文)

80 Scalable exfoliation and dispersion of two-dimensional materials - An update; H. C. Tao, Y. Q. Zhang, Y. N. Gao, Z. Y. Sun* and J. Texter,* Phys. Chem. Chem. Phys. 19, 921-960(2017). 2017 PCCP HOT Articles. (ESI论文)

79 Graphene/porous beta TiO2 nanocomposites prepared through a simple hydrothermal method;Y. Q. Zhang, H. C. Tao, Y. N. Gao, T. Ma, J. J. Ding and Z. Y. Sun,* Curr. Graphene Sci. 1, 64-70 (2017).


78 Few-layer graphene modified with nitrogen-rich metallomacrocyclic complexes as precursor for bifunctional oxygen electrocatalysts; D. M. Morales, J. Masa, C. Andronescu, Y. U. Kayran, Z. Y. Sun and W. Schuhmann, Electrochimica Acta 222, 1191-1199 (2016).

77 Oxygen electrochemistry on two dimensional nanosheets; H. C. Tao and Z. Y. Sun,* Book chapter in "Nanosheets and nanospheres: Types, applications and research insights", Nova Science  Publishers, in press.

76 Preparation method of two-dimensional material; Z. Y. Sun, H. C. Tao, Y. Wei, J. J. Ding, Y. Q. Zhang and T. Ma, China Patent CN 105895913 A 20160824 (2016).

75 Demonstrating the steady performance of iron oxide composites over 2000 cycles at fast charge-rates for Li-ion batteries; Z. Y. Sun,* E. Madej, A. Genc, M. Muhler, J. Arbiol, W. Schuhmann and E. Ventos,* Chem. Commun. 52, 7348-7351 (2016).

74 Hydrazine-assisted Liquid Exfoliation of MoS2 for Catalytic Hydrode oxygenation of 4-Methylphenol; G. L. Liu, H. L. Ma, I. Teixeira, Z. Y. Sun, Q. N. Xia, X. L. Hong and S. C. E. Tsang,* Chem. Eur. J. 22, 2910-2914 (2016).

73 Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolutionJ. Masa,* P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Y. Sun, C. Somsen, M. Muhler and W. Schuhmann,* Adv. Energy Mater. 6, 1670072 (2016).


72 High-quality functionalized few-layer graphene: Facile fabrication and doping with nitrogen as a metal-free catalyst for the oxygen reduction reaction; Z. Y. Sun,* J. Masa, P. Weide, S. M. Fairclough, A. W. Robertson, P. Ebbinghaus, J. H. Warner, S. C. E. Tsang, M. Muhler and W. Schuhmann, J. Mater. Chem. A. 3, 15444-15450 (2015).

71 Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene;Y. Wei and Z. Y. Sun,* Curr. Opin. Colloid Interface Sci. 20, 311-321 (2015).

70 One-pot synthesis of carbon-coated nanostructured iron oxide on few-layer graphene for lithium-ion batteries; Z. Y. Sun,* E. Madej, C. Wiktor, I. Sinev, R. A. Fischer, T. G. van, M. Muhler, W. Schuhmann and E. Ventosa,* Chem. Eur. J. 21, 16154-16161 (2015).


69 A carbon-coated TiO2 (B) nanosheet composite for lithium ion batteries; Z. Y. Sun,* X. Huang, M. Muhler, W. Schuhmann and E. Ventosa,* Chem. Commun. 50, 5506-5509 (2014).

68 Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methylpyrrolidone and surfactants; Z. Y. Sun,* X.Huang, F. Liu, X. N. Yang,* C. Roesler, R. A. Fischer, M. Muhler and W. Schuhmann, Chem. Commun. 50, 10382-10385 (2014).

67 High-concentration graphene dispersions with minimal stabilizer: A scaffold for enzyme immobilization for glucose oxidation; Z. Y. Sun,* J. Vivekananthan, D. A. Guschin, X. Huang, V. Kuznetsov, P. Ebbinghaus, A. Sarfraz, M. Muhler and W. Schuhmann,* Chem. Eur. J. 20, 5752-5761 (2014).

66 Hollow and yolk-shell iron oxide nanostructures on few-layer graphene in Li-ion batteries; Z. Y. Sun,* K. P. Xie, Z. A. Li, I. Sinev, P. Ebbinghaus, A. Erbe, M. Farle, W. Schuhmann, M. Muhler and E. Ventosa,* Chem. Eur. J. 20, 2022-2030 (2014).

65 MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high performance bifunctional oxygen electrodes; J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Y. Sun, S. Gruetzke, P. Weide, M. Muhler* and W. Schuhmann,* Angew. Chem. Int. Ed. 53, 8508-8512 (2014).


64 Ag-stabilized few-layer graphene dispersions in low boiling point solvents for versatile nonlinear optical applications; Z. Y. Sun, N. N. Dong, K. P. Wang, D. König, T. C. Nagaiah, M. D. Sanchez, A. Ludwig, X. Cheng, W. Schuhmann, J. Wang* and M. Muhler*, Carbon 62, 182-192 (2013).

63 High-yield exfoliation of graphite in acrylate polymers: A stable few-layer graphene nanofluid with enhanced thermal conductivity; Z. Y. Sun,* S. Poller, X. Huang, D. Guschin, C. Taetz, P. Ebbinghaus, J. Masa, A. Erbe, A. Kilzer, W. Schuhmann and M. Muhler, Carbon 64, 288-294 (2013).

62 Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etching process; Z. Y. Sun, N. N. Dong, K. P. Xie, W. Xia, D. König, T. C. Nagaiah, M. D. Sanchez, P. Ebbinghaus, A. Erbe, X. Y. Zhang, A. Ludwig, W. Schuhmann, J. Wang* and M. Muhler,* J. Phys. Chem. C 117, 11811-11817 (2013).

61 Trace metal residues promote the activity of supposedly metal-free nitrogen-modified carbon catalysts for the oxygen reduction reaction; J. Masa, A. Zhao, W. Xia, Z. Y. Sun, B. Mei, M. Muhler and W. Schuhmann,* Electrochem. Commun. 34, 113-116 (2013).


60 Rapid and surfactant-free synthesis of bimetallic Pt-Cu nanoparticles simply via ultrasound-assisted redox replacement; Z. Y. Sun, J. Masa, W. Xia, D. König, A. Ludwig, Z. A. Li, M. Farle, W. Schuhmann and M. Muhler,* ACS Catal. 2, 1647-1653 (2012).

59 Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction; Z. Y. Sun, J. Masa, Z. M. Liu,* W. Schuhmann and M. Muhler,* Chem. Eur. J. 18, 6972-6978 (2012).

58 Ionic liquid-stabilized graphene and its use in immobilizing a metal nanocatalyst; W. J. Xiao, Z. Y. Sun, S. Chen, H. Y. Zhang, Y. H. Zhao, C. L. Huang, Z. M. Liu,* RSC Adv. 2, 8189-8193 (2012).

57 One-pot solvothermal method to synthesize platinum/W18O49 ultrafine nanowires and their catalytic performance; H. Y. Zhang, C. L. Huang, R. Tao, Y. F. Zhao, S. Chen, Z. Y. Sun, Z. M. Liu,* J. Mater. Chem. 22, 3354-3359 (2012).

56 Controllable synthesis of titania/reduced graphite oxide nanocomposites with various titania phase compositions and their photocatalytic performance; Y. F. Zhao, Y. Xie, Z. Y. Sun, H. Y. Zhang, R. T. Tao, C. L. Huang and Z. M. Liu,* Sci. China Chem. 55, 1294-1302 (2012).


55 CO2-mediated synthesis of ZnO nanorods and their application in sensing ethanol vapor; G. M. An, Z. Y. Sun, Y. Zhang, K. L. Ding, Y. Xie, R. T. Tao, H. Y. Zhang and Z. M. Liu,* J. Nanosci. Nanotechnol. 11, 1252-1258 (2011).

54 Porous Fe3O4 nanoparticles: Synthesis and application in catalyzing epoxidation of styrene; C. L. Huang, H. Y. Zhang, Z. Y. Sun, Y. F. Zhao, S. Chen, R. T. Tao, Z. M. Liu,* J. Colloid Interface Sci. 364, 298-303 (2011).

53 Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating; Z. Y. Sun, H. Y. Zhang, Y. F. Zhao, C. L. Huang, R. T. Tao, Z. M. Liu* and Z. D. Wu, Langmuir 27, 6244-6251 (2011).

52 Ultrasonication-assisted uniform decoration of carbon nanotubes by various particles with controlled size and loading; Z. Y. Sun, Z. Li, C. L. Huang, Y. F. Zhao, H. Y. Zhang, R. T. Tao, Z. M. Liu,* Carbon 49, 4376-4384 (2011).

51 In-situ loading ultrafine AuPd particles on ceria: highly active catalyst for solvent-free selective oxidation of benzyl alcohol; H. Y. Zhang, Y. Xie, Z. Y. Sun, R. T. Tao, C. L. Huang, Y. F. Zhao and Z. M. Liu,* Langmuir 27, 1152-1157 (2011).

50 High-intensity sonication-assisted synthesis of supported noble metal nanocatalysts; Z. Y. Sun, S. Chen, C. L. Huang, Y. F. Zhao, H. Y. Zhang, Z. Li and Z. M. Liu,* Scientia. Sinica. Chimica. 41, 1366-1371 (2011).


49 In situ loading of palladium nanoparticles on mica and their catalytic applications; R. T. Tao, Z. Y. Sun, Y. Xie, H. Y. Zhang, C. L. Huang, Y. F. Zhao and Z. M. Liu,* J. Colloid Interface Sci. 353, 269-274 (2010).

48 Arginine-mediated synthesis of highly efficient catalysts for transfer hydrogenations of ketones; R. T. Tao, Y. Xie, G. An, K. L. Ding, H. Y. Zhang, Z. Y. Sun and Z. M. Liu,* J. Colloid Interface Sci. 351, 501-506 (2010).

47 Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells; Z. Y. Sun, X. Wang, Z. M. Liu,* H. Y. Zhang, P. Yu and L. Q. Mao,* Langmuir 26, 12383-12389 (2010).

46 Chitosan-mediated synthesis of mesoporous alpha-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane; C. L. Huang, H. Y. Zhang, Z. Y. Sun and Z. M. Liu,* Sci. China Chem. 53, 1502-1508 (2010).

45 Control of optical limiting of carbon nanotube dispersions by changing solvent parameters; J. Wang,* D. Fruchtl, Z. Y. Sun, J. N. Coleman and W. J. Blau, J. Phys. Chem. C. 114, 6148-6156 (2010).

44 Method for preparing composite composed of carbon nanotubes and metal, metal oxide, or metal hydroxideZ. Y. Sun, Z. M. Liu, G. Y. Yang, Y. F. Zhao, Y. Xie, H. Y. Zhang, R. T. Tao and C. J. Huang, China Patent CN 101787502 A 20100728 (2010).

43 Shape and size controlled synthesis of anatase nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Y. Sun, B. X. Han and Z. M. Liu,* Langmuir 26, 5129-5134 (2010).

42 Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid; K. L. Ding, Z. J. Miao, B. J. Hu, G. M. An, Z. Y. Sun, B. X. Han and Z. M. Liu,* Langmuir 26, 10294-10302 (2010).

41 Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes; Z. Y. Sun, H. Y. Zhang, G. M. An, G. Y. Yang and Z. M. Liu,* J. Mater. Chem. 20, 1947-1952 (2010).

40 The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions; Y. Xie, K. L. Ding, Z. M. Liu,* J. J. Li, G. M. An, R. T. Tao, Z. Y. Sun and Z. Z. Yang,* Chem. Eur. J. 16, 6687-6692 (2010).

39 The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes; Z. Y. Sun, Y. F. Zhao, Y. Xie, R. T. Tao, H. Y. Hong, C. L. Huang and Z. M. Liu,* Green Chem. 12, 1007-1011 (2010).

38 Green solvent-based approaches for synthesis of nanomaterialsZ. M. Liu* and Z. Y. Sun, Sci. China Chem. 53, 372-382 (2010).

37 New solvents for nanotubes: Approaching the dispersibility of surfactants;  S. D. Bergin, Z. Y. Sun, P. Streich, J. Hamilton and J. N. Coleman,* J. Phys. Chem. C. 114, 231-237 (2010).


36 Effects of ambient conditions on solvent-nanotube dispersions: Exposure to water and temperature variation; Z. Y. Sun,* I. O'Connor, S. Bergin and J. Coleman, J. Phys. Chem. C. 113, 1260-1266 (2009).

35 In situ controllable loading of ultrafine noble metal particles on titania; Y. Xie, K. L. Ding, Z. M. Liu,* R. T. Tao, Z. Y. Sun, H. Y. Zhang and G. M. An, J. Am. Chem. Soc. 131, 6648-6649 (2009).

34 Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures; S. Bergin, Z. Y. Sun, D. Rickard, P. Streich, J. Hamilton and J. Coleman,* ACS Nano 3, 2340-2350 (2009).

33 p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution;H. Y. Zhang, Y. Xie, Z. M. Liu,* R. T. Tao, Z. Y. Sun, K. L. Ding, and G. M. An, J. Colloid. Interf. Sci., 338, 468-473 (2009).

32 Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives; Z. Y. Sun,* V. Nicolosi, S. Bergin and J. Coleman,* Nanotechnology 19, 485702/1-485702/9 (2008).

31 High-yield production of graphene by liquid-phase exfoliation of graphite; Y. Hernandez, V. Nicolosi, M. Lotya, F. Blighe, Z. Y. Sun, S. De, I. T. Mc Govern, B. Holland, M. Byrne, Y. K. Gun’KO, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman,* Nat. Nanotech. 3, 563-568 (2008).

30 Large populations of individual nanotubes in surfactant-based dispersions without the need for ultracentrifugation; S. Bergin, V. Nicolosi, H. Cathcart, M. Lotya, D. Rickard, Z. Y. Sun, W. Blau and J. N. Coleman,* J. Phys. Chem. C. 112, 972-977 (2008).

29 Quantitative evaluation of surfactant-stabilized single-walled carbon Nanotubes: Dispersion quality and its correlation with zeta potential; Z. Y. Sun, V. Nicolosi, D. Rickard, S. Bergin, D. Aherne and J. N. Coleman,* J. Phys. Chem. C. 112, 10692-10699 (2008).

28 Towards solutions of single-walled carbon nanotubes in common solvents;S. Bergin, V. Nicolosi, P. Streich, S. Giordani, Z. Y. Sun, A. Windle, P. Ryan, N. Niraj, Z. T. Wang, L. Carpenter, W. J. Blau, J. J. Boland, J. P. Hamilton,* J. N. Coleman,* Adv. Mater. 20, 1876-1881 (2008).

27 Coating carbon nanotubes with metal oxides in a supercritical carbon dioxide-ethanol solution; Z. Y. Sun, X. R. Zhang, B. X. Han, Y. Y. Wu, G. M. An, Z. M. Liu,* S. D. Miao, and Z. J. Miao, Carbon, 45, 2589-2596 (2007).

26 Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiationG. M. An, W. H. Ma, Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and K. L. Ding, Carbon 45, 1795-1801 (2007).

25 Supercritical carbon dioxide-assisted deposition of tin oxide on carbon nanotubes; Z. Y. Sun, Z. M. Liu,* B. X. Han and G. M. An, Mater. Lett. 61, 4565-4568 (2007).

24 Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells; G. M. An, P. Yu, L. Q. Mao, Z. Y. Sun, Z. M. Liu,* S. D. Miao, Z. J. Miao and K. L. Ding, Carbon 45, 536-542 (2007).

23 Decoration carbon nanotubes with Pd and Ru nanocrystals via an inorganic reaction route in supercritical carbon dioxide-methanol solution; Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, Z. J. Miao and G. M. An, J. Colloid. Interf. Sci. 304, 323-328 (2006).

22 Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethylamine; Z. Y. Sun, Z. M. Liu,* B. X. Han, S. D. Miao, J. M. Du and Z. J. Miao, Carbon 44, 888-893(2006).

21 Synthesis of ZrO2-carbon nanotube composites and their application as chemiluminescent sensor material for ethanol; Z. Y. Sun, X. R. Zhang, N. Na, Z. M. Liu,* B. X. Han and G. M. An, J. Phys. Chem. B 110, 13410-13414 (2006).

20 Microwave-assisted synthesis of Pt nanocrystals and deposition on carbon nanotubes in ionic liquids; Z. M. Liu,* Z. Y. Sun, B. X. Han, J. L. Zhang, J. Huang, J. M. Du and S. D. Miao, J. Nanosci. Nanotechnol. 6, 175-9 (2006).

19 Ru nanoparticles immobilized on montmorillonite by ionic liquids: A highly efficient heterogeneous catalyst for the hydrogenation of benzene; S. D. Miao, Z. M. Liu,* B. X. Han, J. Huang, Z. Y. Sun, J. L. Zhang and T. Jiang, Angew. Chem. Int. Ed. 45, 266-269 (2006).

18 Synthesis of noble metal/carbon nanotube composites in supercritical methanol; Z. Y. Sun, L. Fu, Z. M. Liu,* B. X. Han, Y. Q. Liu and J. M. Du, J. Nanosci. Nanotechnol. 6, 691-697 (2006).

17 Synthesis and characterization of TiO2-montmorillonite nanocomposites and their application for removal of methylene blue; S. D. Miao, Z. M. Liu,* B. X. Han, J. L. Zhang, X. Yu, J. M. Du and Z. Y. Sun, J. Mater. Chem. 16, 579-584 (2006).

16 Synthesis of polyaniline nanofibrous networks with the aid of an amphiphilic ionic liquid; Z. J. Miao, Y. Wang, Z. M. Liu,* J. Huang, B. X. Han, Z. Y. Sun and J. M. Du, J. Nanosci. Nanotechnol. 6, 227-230 (2006).

15 Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B; S. D. Miao, Z. M. Liu,* B. X. Han, H. W. Yang, Z. J. Miao and Z. Y. Sun, J. Colloid. Interf. Sci. 301, 116-122 (2006).

14 A highly efficient chemical sensor material for H2S: alpha-Fe2O3 nanotubes fabricated using carbon nanotube templates; Z. Y. Sun, H. Q. Yuan, Z. M. Liu, B. X. Han and X. R. Zhang,* Adv. Mater. 17, 2993-2997 (2005).

13 Carbon onions synthesized via thermal reduction of glycerin with magnesium; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han,* Z. Y. Sun and Y. Huang, Mater. Chem. Phys. 93, 178-180 (2005).

12 Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar; S. D. Miao, Z. M. Liu,* H. W. Ma, B. X. Han, J. M. Du, Z. Y. Sun and Z. J. Miao, Micropor. Mesopor. Mat. 83, 277-282 (2005).

11 Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures: Optical and electrical properties; J. M. Du, L. Fu, Z. M. Liu, B. X. Han,* Z. H. Li, Y. Q. Liu,* Z. Y. Sun and D. B. Zhu, J. Phys. Chem. B 109, 12772-12776 (2005).

10 Solvothermal synthesis of mesoporous Eu2O3-TiO2 composites; Z. M. Liu,* J. L. Zhang, B. X. Han, J. M. Du, T. C. Mu, Y. Wang and Z. Y. Sun, Micropor. Mesopor. Mat. 81, 169-174 (2005).

9 Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water; Z. Y. Sun, Z. M. Liu,* B. X. Han,* Y. Wang, J. M. Du, Z. L. Xie, G. J. Han, Adv. Mater. 17, 928-932 (2005).

8 Phase-separation-induced micropatterned polymer surfaces and their applications; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, J. L. Zhang and D. H. Sun, Adv. Funct. Mater. 15, 655-663 (2005).

7 Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidantY. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, Y. Huang, G. Y. Yang, Langmuir 21, 833-836 (2005).

6 Carbon nanoflowers synthesized by a reduction-pyrolysis-catalysis route; J. M. Du, Z. M. Liu,* Z. H. Li, B. X. Han, Z. Y. Sun and Y. Huang, Mater. Lett. 59, 456-458 (2005).

5 Replication of biological organizations through a supercritical fluid route; Y. Wang, Z. M. Liu,* B. X. Han,* Z. Y. Sun, J. M. Du, J. L. Zhang, T. Jiang, W. Z. Wu and Z. J. Miao, Chem. Commun. 23, 2948-2950 (2005).

4 Fabrication and characterization of magnetic carbon nanotube compositesZ. Y. Sun, Z. M. Liu,* Y. Wang, B. X. Han, J. M. Du and J. L. Zhang, J. Mater. Chem. 15, 4497-4501 (2005).

3 In situ Eu2O3 coating on the walls of mesoporous silica SBA-15 in supercritical ethane plus ethanol mixture; Z. M. Liu,* J. Q. Wang, J. L. Zhang, B. X. Han,* Y. Wang and Z. Y. Sun, Micropor. Mesopor. Mat. 75, 101-105 (2005).

2 Synthesis of tubular graphite cones through a catalytically thermal reduction route; Z. Y. Sun, Z. M. Liu,* J. M. Du, Y. Wang, B. X. Han, T. C. Mu, J. Phys. Chem. B 108, 9811-9814 (2004).

Carbon nanotube/poly(2,4-hexadiyne-1,6-diol) nanocomposites prepared with the aid of supercritical CO2; X. H. Dai, Z. M. Liu,* B. X. Han, Z. Y. Sun, Y. Wang, J. Xu,* X. L. Guo, N. Zhao and J. Chen, Chem. Commun. 19, 2190-2191 (2004).